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ERROR BOUNDS AND ASYMPTOTIC PERFORMANCE UNDER
MISMATCH OF MULTISENSOR DETECTION SYSTEMS

D. Kazakos
Electrical Engineering Department
University of Virginia
Charlottesville, VA 22901

ABSTRACT

We consider a binary detection probiem. when the
data are obtained from m distant sensors, and modelled as
stadonary Gaussion processes, with different spectra. We
also assume that inaccurate versions of the ue statistcal
models are utilized, and we develop upper bounds to the
probability of error, based on the Chernoff bounding
approach. Those bounds also converge to the asymptotic
probability of error as the number n of data points increases
to =. Conditions for sustaining, in spite of mismatch,
exponental convergence of the error probability to zero
with n are determined.

INTRODUCTION

There has been much interest recently in the signal
detection problem for data available from multiple sensors
{1] - [7]. In this paper we develop bounds to the probabil-
ity of error for binary detection from multisensor data,
when inaccurate versions of the actual statistics are incor-
porated into the decision rule. We specifically investgate
the error probability for detection in Gaussian, stationary
processes with inaccurately known spectra.

SUMMARY OF RESULTS

Suppose that m sensors are utilized for deciding
between two hypotheses, Hy, Hg. Let x§ = (xy) - * - xin) be
the data vector for the kth sensor, distributed according to
the probability density function fj (xf) for j=0,1 under
Hy, H,. correspondingly. Suppose, also, that gy (x§) is the
“inaccurate” version of fi (x}) that is used in the decision
rule. We will assume throughout this paper that the data
from different sensors are statistically independent. This
assumprion will be removed in a subsequent paper.
Because of the independence between distinct sensors, the
likelihood ratio test is:

m
-Decide H ifm™ - T qu(xP) > T )
=1
where:
(xR
a(x)=n"" - log BulXi) )
gok(xk)

This resesrch has been tupportad by a contract from Rome Aur Develvpmem
Center, momwred oy Dr. Vincent Vanmcols, of the Signal Processu ¢ i . on

is the "mismatched” log likelihood function of the kth sen-
SOr.
Let, for j=0.1:
P(f,g.n)=  Probability of erroneously deciding H, using
{8k} and based on n measurements.

We will utilize the Chemnoff bounding technique. and
subsequently relate the bound to "large deviation theory.”
181, [9], as n—eo.

The basic Chemoff bound is:

Py(f,g.n) = Prim™! Ezkﬂ'l H,)
k=1

< E(,cxp[t(m‘1 E y-N)=
k=1

m
=[] E, expltm™ (z-D)] (3
k=1

m
Pi(f.g.n)=Prim' ¥ z S TIH]
k=1

m
<E; exp[-t(m™ T z-NDi=
k=l

m
= El E, exp (—tm™ (z.~D)] )

for 120, E, = expectation under H;. Note that the bound (3
is less that 1 for some t20, if and only if:

m
m! Y Eoze <T (3
k=1
Similarly, (4) is less than 1 for some 20, if and only it:
m
m™! ¥ Ez>T (6)
k=1

Let, now:

ze =n"" log [g1(x§)/gox (xP)] (N

be the mismatched log-likelihood function for the kth sen-
sor, and s=t-n"!20. Straightforward calculation provides us

e
with the following expressions:
Eo exp(tm™ (z¢=TI= [ foc(x DB xRV Bok (X1 T
S | LS
/s T
(& Av i oG for
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dxg - exp(—snT/m). %
Ey expl—tm™ (z¢=T)] = [ fuc(xDg1c(xEVgok (xDI™™
dxg - exp(snT/m) &)
Eo 2 =n"" [ for (x]) log [g1c(xEVgox (xDdxR  (10)
Ey ze =n7' [ fiyc (xP) log (g (xEVgox(xPIAXR (1)
Define the functionals:

Gy [f. g gox. s &

! log [ fxDguxE)/goc xDI*™ dxg  (12)

Taking logarithms of (3), (4) and using (8), (9), (12), we
find the bounds:

m
n~! log Py(f.g.n) S ¥ Gilfox. 81k, Lox-Msl=sT.  (13)
=l

) m
n”! log Py(£.2.0) < ¥ Glfik. gk 8ok, n. =8} + sT. (14)
k=t

We observe that if G| denotes the derivative of Gy with
respect to s, then. from (10), (12), (7):

Gi{fox» 81 Boon.0] =m™" Eg 2. {15)

Giifix. 81k, Box-0,01 =m™ Ey z. (16)

Hence. if (5) is saasfied, the slope of the upper bound (13)
at s=0 is negatve, and the bound is zero at s=0. Similarly,
if {6) is satisfied, the slope of the upper bound (14) at s=0 is
negative, and the bound is zero at s=0. Also. both bounds
(13Y and (14) are convex with respect to s.

The tghtened Chemnotf bounds (13), (14) are:

m
n™! log Py(f.g,n) < inf ¥ Gulfox. 81k ok, 5I-5T-(17)
5 k=1

m
n"! log Py(f.g.n) <inf ¥ Gi!° .g1c. 8ok D.-s1+sT(18)
S k=1

Suppose. now, that for the class of statistical models we
conswder, the limits:

lim Gi[fix.81c, ok M5l in[fJbglk-gOk-“.Sl (19)
N —po

exist, for k=1....,m, j=0.1

Suppose, also that:
n—see

m
lim a7 ¥ [ fo (xP) log [g1(xE)Wgox(x)IdxE<T (20
k=1

m
lim a™" ¥ [ i (xR) log (g (xE Vo (xIdxE>T (21)

n—ess k=l

Then., utilizing the results of Large Deviadon Theory, {8].
[9], we find:

lim n! log Py(f,g.n) =
N—pen

m
i‘:f X Gi[fok. &1x. Boko°. 5]~ sT. (22)
k=1

lim n~! log Py(f.g.n) =
N—bee

m
if:f 3 Gilfix.Bik.Box.oo=s}+ sT 23)
=1

It is interesting to observe that the bounds (17), (18)
become the exact asymptotic error probabilities as n—ee.
This is the essence of Large Deviation Theory (8], [9].

We will now concentrate on a major class of statisti-
cal models for which the limits (19), (20, (21) exist. This
is the class of Gaussian, stationary random processes with
zero means and different spectra. Consider three muluvan-
ate Gaussian probability density functions
f(x™)., g(x"), go(x™) with zero means and covariance
matrices F, C,, Cy. We calculate the integral of eq (12):

Glf.g; 2o n.08)=n"' log _[ f(x™(g (x"Vgo(x"1{Pdx*=

=-—[n"! log IF7!+0C,~6C5' | —n7! log +FT'1 -

o]~

-6n~! log ICT' 1 +8n7! log!C' :J (24)

Taking the limit as n—oe, and using the results of {10].
[11}, we find:

R
~2GIf.g,.80.22.01=(2r)"" [ (loglf™! (\)}+8c ' (A)-0c5’ (h)]-

-r
-log ' (A) -8 logci'(A) + 0 logcilAydA 125,

where, f(X),c;(A),co(A) are the three spectra corresponding
to f.g;.8o. and it is assumed that they are smictly posiuve
for ail Ag(-r.x). Using (25) for k=1....m, and assuming
that for the kth sensor the mue spectra are {fn (M), f1A)}
under Ho, H,, and the assumed spectra are {gog(A), gic(A}}
under Hy,H;, we can evaluate the rates in (22). (23).

The necessary and sufficient conditions in order for
Py(f.g.n) and Py (f.g.n) to converge exponenually to zero.
are that the derivanves of (22), (23) at s=0 are neganve.
which are equivalent to (20), (21). The denvauve of G
with respect to 8 at =0, is:

b 4
-2G'(£.81.80,%.8=01=21)"" [ {fM)[c7' M—i' ()=

-1
- logeo(A)eTHA) dA. (26)

The condition of negative slope at s=0 of (22) is:

n m
eo™ [ T (faigit ) - ga)] -
-n =1

log gox(Mgix (M) jdA + 2T >0 27




The condition of negative slope at s=0 of (23) is:

R m
eo™ T Mg - gat )=

-nt k=1
log gox(Mgik (M) }dh - 2T >0, (28)

Conditions (27), (28) guarantee exponential convergence of
Py.P; to zero. correspondingly. It can be shown that if (27)
is not satisfied, then Py converges to 1 as n—ee. Similarly,
if (28) is not satisfied. P; converges to 1. The proof of the
latter fact is not given here, but it will appear in the
expanded version of the paper.

Let us define the spectral distance measure:
n

g =2 [ (g -1~

-K
log fA) g7 (M) }dA (29)

Because of the idennty x—12logx, it is seen that
I(f.2)20 with equality if and only if f(A) = g(A) for almost
all Ag[-m.w}. After some algebraic manipulations, condi-
tion (27) is expressed as:

m
T ok, g1x) — fok, gow) +2T>0 (30
=t

Similarly, condition (28) is expressed as:

m
T It gix) — (Fixs Bow) —2T >0 31
%=t

Combining (30) and (31), we see that the necessary
and sufficient condition for exponential convergence of the
error rate to zero, is the satsfacton of the double inequal-
ity:

m
VY Ui g - i Bow) > T >
=1

m
>27" ¥ Ifox, gox) — Ufoks Bix)- (32)
=1

As long as the leftmost side of (32) is larger than the
rightmost side. we can always pick a threshold T between
those two numbers to achieve asymptotic convergence of
the error rates to zero. For the special case of matched
statistics. we have fy, = gy, fox = Sok. and the condition
(32) becomes:

m m
NS Uy fo) > T> =270 T U, fi) (33)
= k=t

We note that (33) can always be satisfied for some T,
because the leftmost side is nonnegative, and the rightmost
side nonpositive. Thus. in the “matched" case. exponential
convergence hinges only upon the choice of T.

To evaluate the actual rates of convergence, we need
10 use expression (25) for k=1....m into (22). (23) and
minimize with respect 1o s.

CONCLUSIONS

We have obtained the rates of convergence of error
probabilides in multisensor detection for a binary
hypothesis, and we determined the conditions of exponen-
tial convergence in the presence of mismatch. The condi-

tions are necessary and sutficient.
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RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
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